Targeting Vascular NADPH Oxidase 1 Blocks Tumor Angiogenesis through a PPARa Mediated Mechanism
نویسندگان
چکیده
Reactive oxygen species, ROS, are regulators of endothelial cell migration, proliferation and survival, events critically involved in angiogenesis. Different isoforms of ROS-generating NOX enzymes are expressed in the vasculature and provide distinct signaling cues through differential localization and activation. We show that mice deficient in NOX1, but not NOX2 or NOX4, have impaired angiogenesis. NOX1 expression and activity is increased in primary mouse and human endothelial cells upon angiogenic stimulation. NOX1 silencing decreases endothelial cell migration and tube-like structure formation, through the inhibition of PPARa, a regulator of NF-kB. Administration of a novel NOX-specific inhibitor reduced angiogenesis and tumor growth in vivo in a PPARa dependent manner. In conclusion, vascular NOX1 is a critical mediator of angiogenesis and an attractive target for anti-angiogenic therapies. Citation: Garrido-Urbani S, Jemelin S, Deffert C, Carnesecchi S, Basset O, et al. (2011) Targeting Vascular NADPH Oxidase 1 Blocks Tumor Angiogenesis through a PPARa Mediated Mechanism. PLoS ONE 6(2): e14665. doi:10.1371/journal.pone.0014665 Editor: Stefan Wölfl, Universität Heidelberg, Germany Received June 16, 2010; Accepted January 11, 2011; Published February 7, 2011 Copyright: 2011 Garrido-Urbani et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was supported by the Swiss Cancer League, KPS-OCS 01812-12-2005 and by the Swiss National Science Foundation, FNS-310030-120184. These funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. This study was also funded by GenKyoTex S.A. as employer of some of the authors. This funder was implicated in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: A patent is pending on GKT136901 with PP as inventor and GenKyoTex as owner of the patent. PP, CS and K-HK own shares of GenKyoTex. A patent is pending on fulvene-5, with JLA as inventor and Emory University as owner of the patent. This does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials. * E-mail: [email protected]
منابع مشابه
Targeting Vascular NADPH Oxidase 1 Blocks Tumor Angiogenesis through a PPARα Mediated Mechanism
Reactive oxygen species, ROS, are regulators of endothelial cell migration, proliferation and survival, events critically involved in angiogenesis. Different isoforms of ROS-generating NOX enzymes are expressed in the vasculature and provide distinct signaling cues through differential localization and activation. We show that mice deficient in NOX1, but not NOX2 or NOX4, have impaired angiogen...
متن کاملReactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor.
Reactive oxygen species (ROS) are associated with multiple cellular functions such as cell proliferation, differentiation, and apoptosis. However, the direct roles of endogenous ROS production still remain to be elucidated. In this study, we found that high levels of ROS were spontaneously produced by ovarian and prostate cancer cells. This elevated ROS production was inhibited by NADPH oxidase...
متن کاملSpironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells
Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...
متن کاملSpironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells
Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...
متن کاملQuinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway
Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011